Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effect of temperature on postillumination isoprene emission in oak and poplar.

Identifieur interne : 002F09 ( Main/Exploration ); précédent : 002F08; suivant : 002F10

Effect of temperature on postillumination isoprene emission in oak and poplar.

Auteurs : Ziru Li [États-Unis] ; Ellen A. Ratliff ; Thomas D. Sharkey

Source :

RBID : pubmed:21177471

Descripteurs français

English descriptors

Abstract

Isoprene emission from broadleaf trees is highly temperature dependent, accounts for much of the hydrocarbon emission from plants, and has a profound effect on atmospheric chemistry. We studied the temperature response of postillumination isoprene emission in oak (Quercus robur) and poplar (Populus deltoides) leaves in order to understand the regulation of isoprene emission. Upon darkening a leaf, isoprene emission fell nearly to zero but then increased for several minutes before falling back to nearly zero. Time of appearance of this burst of isoprene was highly temperature dependent, occurring sooner at higher temperatures. We hypothesize that this burst represents an intermediate pool of metabolites, probably early metabolites in the methylerythritol 4-phosphate pathway, accumulated upstream of dimethylallyl diphosphate (DMADP). The amount of this early metabolite(s) averaged 2.9 times the amount of plastidic DMADP. DMADP increased with temperature up to 35°C before starting to decrease; in contrast, the isoprene synthase rate constant increased up to 40°C, the highest temperature at which it could be assessed. During a rapid temperature switch from 30°C to 40°C, isoprene emission increased transiently. It was found that an increase in isoprene synthase activity is primarily responsible for this transient increase in emission levels, while DMADP level stayed constant during the switch. One hour after switching to 40°C, the amount of DMADP fell but the rate constant for isoprene synthase remained constant, indicating that the high temperature falloff in isoprene emission results from a reduction in the supply of DMADP rather than from changes in isoprene synthase activity.

DOI: 10.1104/pp.110.167551
PubMed: 21177471
PubMed Central: PMC3032451


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Effect of temperature on postillumination isoprene emission in oak and poplar.</title>
<author>
<name sortKey="Li, Ziru" sort="Li, Ziru" uniqKey="Li Z" first="Ziru" last="Li">Ziru Li</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824</wicri:regionArea>
<orgName type="university">Université d'État du Michigan</orgName>
<placeName>
<settlement type="city">East Lansing</settlement>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ratliff, Ellen A" sort="Ratliff, Ellen A" uniqKey="Ratliff E" first="Ellen A" last="Ratliff">Ellen A. Ratliff</name>
</author>
<author>
<name sortKey="Sharkey, Thomas D" sort="Sharkey, Thomas D" uniqKey="Sharkey T" first="Thomas D" last="Sharkey">Thomas D. Sharkey</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21177471</idno>
<idno type="pmid">21177471</idno>
<idno type="doi">10.1104/pp.110.167551</idno>
<idno type="pmc">PMC3032451</idno>
<idno type="wicri:Area/Main/Corpus">002F74</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002F74</idno>
<idno type="wicri:Area/Main/Curation">002F74</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002F74</idno>
<idno type="wicri:Area/Main/Exploration">002F74</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Effect of temperature on postillumination isoprene emission in oak and poplar.</title>
<author>
<name sortKey="Li, Ziru" sort="Li, Ziru" uniqKey="Li Z" first="Ziru" last="Li">Ziru Li</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824</wicri:regionArea>
<orgName type="university">Université d'État du Michigan</orgName>
<placeName>
<settlement type="city">East Lansing</settlement>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ratliff, Ellen A" sort="Ratliff, Ellen A" uniqKey="Ratliff E" first="Ellen A" last="Ratliff">Ellen A. Ratliff</name>
</author>
<author>
<name sortKey="Sharkey, Thomas D" sort="Sharkey, Thomas D" uniqKey="Sharkey T" first="Thomas D" last="Sharkey">Thomas D. Sharkey</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alkyl and Aryl Transferases (metabolism)</term>
<term>Butadienes (MeSH)</term>
<term>Hemiterpenes (biosynthesis)</term>
<term>Hemiterpenes (metabolism)</term>
<term>Light (MeSH)</term>
<term>Organophosphorus Compounds (metabolism)</term>
<term>Pentanes (MeSH)</term>
<term>Plant Leaves (metabolism)</term>
<term>Populus (metabolism)</term>
<term>Quercus (metabolism)</term>
<term>Temperature (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alkyl et aryl transferases (métabolisme)</term>
<term>Butadiènes (MeSH)</term>
<term>Composés organiques du phosphore (métabolisme)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Hémiterpènes (biosynthèse)</term>
<term>Hémiterpènes (métabolisme)</term>
<term>Lumière (MeSH)</term>
<term>Pentanes (MeSH)</term>
<term>Populus (métabolisme)</term>
<term>Quercus (métabolisme)</term>
<term>Température (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Hemiterpenes</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Alkyl and Aryl Transferases</term>
<term>Hemiterpenes</term>
<term>Organophosphorus Compounds</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Butadienes</term>
<term>Pentanes</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Hémiterpènes</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
<term>Quercus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Alkyl et aryl transferases</term>
<term>Composés organiques du phosphore</term>
<term>Feuilles de plante</term>
<term>Hémiterpènes</term>
<term>Populus</term>
<term>Quercus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Light</term>
<term>Temperature</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Butadiènes</term>
<term>Lumière</term>
<term>Pentanes</term>
<term>Température</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Isoprene emission from broadleaf trees is highly temperature dependent, accounts for much of the hydrocarbon emission from plants, and has a profound effect on atmospheric chemistry. We studied the temperature response of postillumination isoprene emission in oak (Quercus robur) and poplar (Populus deltoides) leaves in order to understand the regulation of isoprene emission. Upon darkening a leaf, isoprene emission fell nearly to zero but then increased for several minutes before falling back to nearly zero. Time of appearance of this burst of isoprene was highly temperature dependent, occurring sooner at higher temperatures. We hypothesize that this burst represents an intermediate pool of metabolites, probably early metabolites in the methylerythritol 4-phosphate pathway, accumulated upstream of dimethylallyl diphosphate (DMADP). The amount of this early metabolite(s) averaged 2.9 times the amount of plastidic DMADP. DMADP increased with temperature up to 35°C before starting to decrease; in contrast, the isoprene synthase rate constant increased up to 40°C, the highest temperature at which it could be assessed. During a rapid temperature switch from 30°C to 40°C, isoprene emission increased transiently. It was found that an increase in isoprene synthase activity is primarily responsible for this transient increase in emission levels, while DMADP level stayed constant during the switch. One hour after switching to 40°C, the amount of DMADP fell but the rate constant for isoprene synthase remained constant, indicating that the high temperature falloff in isoprene emission results from a reduction in the supply of DMADP rather than from changes in isoprene synthase activity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21177471</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>04</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>155</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2011</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Effect of temperature on postillumination isoprene emission in oak and poplar.</ArticleTitle>
<Pagination>
<MedlinePgn>1037-46</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.110.167551</ELocationID>
<Abstract>
<AbstractText>Isoprene emission from broadleaf trees is highly temperature dependent, accounts for much of the hydrocarbon emission from plants, and has a profound effect on atmospheric chemistry. We studied the temperature response of postillumination isoprene emission in oak (Quercus robur) and poplar (Populus deltoides) leaves in order to understand the regulation of isoprene emission. Upon darkening a leaf, isoprene emission fell nearly to zero but then increased for several minutes before falling back to nearly zero. Time of appearance of this burst of isoprene was highly temperature dependent, occurring sooner at higher temperatures. We hypothesize that this burst represents an intermediate pool of metabolites, probably early metabolites in the methylerythritol 4-phosphate pathway, accumulated upstream of dimethylallyl diphosphate (DMADP). The amount of this early metabolite(s) averaged 2.9 times the amount of plastidic DMADP. DMADP increased with temperature up to 35°C before starting to decrease; in contrast, the isoprene synthase rate constant increased up to 40°C, the highest temperature at which it could be assessed. During a rapid temperature switch from 30°C to 40°C, isoprene emission increased transiently. It was found that an increase in isoprene synthase activity is primarily responsible for this transient increase in emission levels, while DMADP level stayed constant during the switch. One hour after switching to 40°C, the amount of DMADP fell but the rate constant for isoprene synthase remained constant, indicating that the high temperature falloff in isoprene emission results from a reduction in the supply of DMADP rather than from changes in isoprene synthase activity.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Ziru</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ratliff</LastName>
<ForeName>Ellen A</ForeName>
<Initials>EA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sharkey</LastName>
<ForeName>Thomas D</ForeName>
<Initials>TD</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>12</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002070">Butadienes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D045782">Hemiterpenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009943">Organophosphorus Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010420">Pentanes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0A62964IBU</RegistryNumber>
<NameOfSubstance UI="C005059">isoprene</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>358-72-5</RegistryNumber>
<NameOfSubstance UI="C043060">3,3-dimethylallyl pyrophosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.5.-</RegistryNumber>
<NameOfSubstance UI="D019883">Alkyl and Aryl Transferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.5.1.-</RegistryNumber>
<NameOfSubstance UI="C093854">isoprene synthase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019883" MajorTopicYN="N">Alkyl and Aryl Transferases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002070" MajorTopicYN="N">Butadienes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045782" MajorTopicYN="N">Hemiterpenes</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008027" MajorTopicYN="N">Light</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009943" MajorTopicYN="N">Organophosphorus Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010420" MajorTopicYN="N">Pentanes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029963" MajorTopicYN="N">Quercus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="Y">Temperature</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>12</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>12</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>4</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21177471</ArticleId>
<ArticleId IdType="pii">pp.110.167551</ArticleId>
<ArticleId IdType="doi">10.1104/pp.110.167551</ArticleId>
<ArticleId IdType="pmc">PMC3032451</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>FEBS Lett. 2006 Mar 6;580(6):1547-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16480720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Mar;98(3):1175-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1960 Feb;235:326-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13792054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1986 Dec;82(4):1063-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16665135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 1994 Jan;39(1):85-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24311004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2009 Apr;100(1):29-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19343531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 May;30(5):662-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17407543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1999 Dec;19(14):917-924</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1993 Mar;189(3):420-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24178500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Nov;222(5):777-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16052321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1981 Dec;153(4):376-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24276943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Jan;32(1):82-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19021881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1586-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12571359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2008 Jan;101(1):5-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17921528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Dec;115(4):1413-1420</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Nov;32(11):1538-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19558623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 May;30(5):654-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17407542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1988 Sep 16;241(4872):1473-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3420404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2002 Nov;269(22):5617-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12423361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2005 Feb;66(3):305-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15680987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Nov;154(3):1558-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20837700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1990 Nov;182(4):523-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24197372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Sep 17;99(19):12108-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12198182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Sep 17;461(7262):381-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19759617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1984 Nov;76(3):723-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16663913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Sep;112(1):171-182</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1989 May;90(1):267-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1975 Jun;55(6):982-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16659231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1984 Mar;160(4):305-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24258579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9699-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9689144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Sep;151(1):448-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19587097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 May 27;100(11):6866-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12748386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Org Chem. 2005 Nov 11;70(23):9168-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16268586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1980 Jul;66(1):34-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16661389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2005 Mar;10(2):131-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15650872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2003 Jul 15;415(2):146-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12831836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2010 Jan 4;584(1):129-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19903472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Mar;149(3):1609-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19129417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;179(1):55-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18557875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1974 Sep;54(3):312-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16658880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Feb 5;99(3):1158-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11818558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jan 18;102(3):933-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15630092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Prod Rep. 1997 Dec;14(6):591-603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9418296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Jan 16;421(6920):256-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12529640</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Michigan</li>
</region>
<settlement>
<li>East Lansing</li>
</settlement>
<orgName>
<li>Université d'État du Michigan</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Ratliff, Ellen A" sort="Ratliff, Ellen A" uniqKey="Ratliff E" first="Ellen A" last="Ratliff">Ellen A. Ratliff</name>
<name sortKey="Sharkey, Thomas D" sort="Sharkey, Thomas D" uniqKey="Sharkey T" first="Thomas D" last="Sharkey">Thomas D. Sharkey</name>
</noCountry>
<country name="États-Unis">
<region name="Michigan">
<name sortKey="Li, Ziru" sort="Li, Ziru" uniqKey="Li Z" first="Ziru" last="Li">Ziru Li</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002F09 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002F09 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21177471
   |texte=   Effect of temperature on postillumination isoprene emission in oak and poplar.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21177471" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020